3.4.11 \(\int (a+a \cos (c+d x))^4 \sec ^{\frac {9}{2}}(c+d x) \, dx\) [311]

Optimal. Leaf size=187 \[ -\frac {64 a^4 \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {136 a^4 \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {64 a^4 \sqrt {\sec (c+d x)} \sin (c+d x)}{5 d}+\frac {94 a^4 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{21 d}+\frac {8 a^4 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {2 a^4 \sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{7 d} \]

[Out]

94/21*a^4*sec(d*x+c)^(3/2)*sin(d*x+c)/d+8/5*a^4*sec(d*x+c)^(5/2)*sin(d*x+c)/d+2/7*a^4*sec(d*x+c)^(7/2)*sin(d*x
+c)/d+64/5*a^4*sin(d*x+c)*sec(d*x+c)^(1/2)/d-64/5*a^4*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*Elliptic
E(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+136/21*a^4*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(
1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.18, antiderivative size = 187, normalized size of antiderivative = 1.00, number of steps used = 19, number of rules used = 6, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {3317, 3876, 3856, 2720, 3853, 2719} \begin {gather*} \frac {2 a^4 \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{7 d}+\frac {8 a^4 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {94 a^4 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{21 d}+\frac {64 a^4 \sin (c+d x) \sqrt {\sec (c+d x)}}{5 d}+\frac {136 a^4 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{21 d}-\frac {64 a^4 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])^4*Sec[c + d*x]^(9/2),x]

[Out]

(-64*a^4*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (136*a^4*Sqrt[Cos[c + d*x]]*
EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(21*d) + (64*a^4*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(5*d) + (94*a^
4*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(21*d) + (8*a^4*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(5*d) + (2*a^4*Sec[c + d*x
]^(7/2)*Sin[c + d*x])/(7*d)

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3317

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Dist
[d^(n*p), Int[(d*Csc[e + f*x])^(m - n*p)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x
] &&  !IntegerQ[m] && IntegersQ[n, p]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3876

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Int[Expand
Trig[(a + b*csc[e + f*x])^m*(d*csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0]
 && IGtQ[m, 0] && RationalQ[n]

Rubi steps

\begin {align*} \int (a+a \cos (c+d x))^4 \sec ^{\frac {9}{2}}(c+d x) \, dx &=\int \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^4 \, dx\\ &=\int \left (a^4 \sqrt {\sec (c+d x)}+4 a^4 \sec ^{\frac {3}{2}}(c+d x)+6 a^4 \sec ^{\frac {5}{2}}(c+d x)+4 a^4 \sec ^{\frac {7}{2}}(c+d x)+a^4 \sec ^{\frac {9}{2}}(c+d x)\right ) \, dx\\ &=a^4 \int \sqrt {\sec (c+d x)} \, dx+a^4 \int \sec ^{\frac {9}{2}}(c+d x) \, dx+\left (4 a^4\right ) \int \sec ^{\frac {3}{2}}(c+d x) \, dx+\left (4 a^4\right ) \int \sec ^{\frac {7}{2}}(c+d x) \, dx+\left (6 a^4\right ) \int \sec ^{\frac {5}{2}}(c+d x) \, dx\\ &=\frac {8 a^4 \sqrt {\sec (c+d x)} \sin (c+d x)}{d}+\frac {4 a^4 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{d}+\frac {8 a^4 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {2 a^4 \sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac {1}{7} \left (5 a^4\right ) \int \sec ^{\frac {5}{2}}(c+d x) \, dx+\left (2 a^4\right ) \int \sqrt {\sec (c+d x)} \, dx+\frac {1}{5} \left (12 a^4\right ) \int \sec ^{\frac {3}{2}}(c+d x) \, dx-\left (4 a^4\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx+\left (a^4 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {2 a^4 \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {64 a^4 \sqrt {\sec (c+d x)} \sin (c+d x)}{5 d}+\frac {94 a^4 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{21 d}+\frac {8 a^4 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {2 a^4 \sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac {1}{21} \left (5 a^4\right ) \int \sqrt {\sec (c+d x)} \, dx-\frac {1}{5} \left (12 a^4\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx+\left (2 a^4 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx-\left (4 a^4 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx\\ &=-\frac {8 a^4 \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {6 a^4 \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {64 a^4 \sqrt {\sec (c+d x)} \sin (c+d x)}{5 d}+\frac {94 a^4 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{21 d}+\frac {8 a^4 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {2 a^4 \sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac {1}{21} \left (5 a^4 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx-\frac {1}{5} \left (12 a^4 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx\\ &=-\frac {64 a^4 \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {136 a^4 \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {64 a^4 \sqrt {\sec (c+d x)} \sin (c+d x)}{5 d}+\frac {94 a^4 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{21 d}+\frac {8 a^4 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {2 a^4 \sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{7 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 1.88, size = 271, normalized size = 1.45 \begin {gather*} \frac {a^4 (1+\cos (c+d x))^4 \sec ^8\left (\frac {1}{2} (c+d x)\right ) \left (-\frac {4 i \sqrt {2} e^{-i (c+d x)} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \left (168 \left (1+e^{2 i (c+d x)}\right )+168 \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \, _2F_1\left (-\frac {1}{4},\frac {1}{2};\frac {3}{4};-e^{2 i (c+d x)}\right )+85 e^{i (c+d x)} \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};-e^{2 i (c+d x)}\right )\right )}{-1+e^{2 i c}}+\sqrt {\sec (c+d x)} \left (672 \cos (d x) \csc (c)+\left (235+84 \sec (c+d x)+15 \sec ^2(c+d x)\right ) \tan (c+d x)\right )\right )}{840 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x])^4*Sec[c + d*x]^(9/2),x]

[Out]

(a^4*(1 + Cos[c + d*x])^4*Sec[(c + d*x)/2]^8*(((-4*I)*Sqrt[2]*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*
(168*(1 + E^((2*I)*(c + d*x))) + 168*(-1 + E^((2*I)*c))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[-1/4,
1/2, 3/4, -E^((2*I)*(c + d*x))] + 85*E^(I*(c + d*x))*(-1 + E^((2*I)*c))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeo
metric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x))]))/(E^(I*(c + d*x))*(-1 + E^((2*I)*c))) + Sqrt[Sec[c + d*x]]*(67
2*Cos[d*x]*Csc[c] + (235 + 84*Sec[c + d*x] + 15*Sec[c + d*x]^2)*Tan[c + d*x])))/(840*d)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(438\) vs. \(2(211)=422\).
time = 0.32, size = 439, normalized size = 2.35

method result size
default \(-\frac {32 \sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, a^{4} \left (\frac {253 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{420 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{896 \left (-\frac {1}{2}+\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{4}}-\frac {47 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{672 \left (-\frac {1}{2}+\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2}}-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{80 \left (-\frac {1}{2}+\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{3}}-\frac {4 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )}{5 \sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}}-\frac {2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \left (\EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-\EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{5 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(439\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*cos(d*x+c))^4*sec(d*x+c)^(9/2),x,method=_RETURNVERBOSE)

[Out]

-32*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^4*(253/420*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*co
s(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),
2^(1/2))-1/896*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(-1/2+cos(1/2*d*x+1/2*c
)^2)^4-47/672*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(-1/2+cos(1/2*d*x+1/2*c)
^2)^2-1/80*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(-1/2+cos(1/2*d*x+1/2*c)^2)
^3-4/5*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)/(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)-2/5*(
sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(
1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))))/sin(1/2*d*x+1/2*c)/(2*cos(
1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^4*sec(d*x+c)^(9/2),x, algorithm="maxima")

[Out]

integrate((a*cos(d*x + c) + a)^4*sec(d*x + c)^(9/2), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.12, size = 215, normalized size = 1.15 \begin {gather*} -\frac {2 \, {\left (170 i \, \sqrt {2} a^{4} \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 170 i \, \sqrt {2} a^{4} \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 336 i \, \sqrt {2} a^{4} \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 336 i \, \sqrt {2} a^{4} \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {{\left (672 \, a^{4} \cos \left (d x + c\right )^{3} + 235 \, a^{4} \cos \left (d x + c\right )^{2} + 84 \, a^{4} \cos \left (d x + c\right ) + 15 \, a^{4}\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}\right )}}{105 \, d \cos \left (d x + c\right )^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^4*sec(d*x+c)^(9/2),x, algorithm="fricas")

[Out]

-2/105*(170*I*sqrt(2)*a^4*cos(d*x + c)^3*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - 170*I*sqr
t(2)*a^4*cos(d*x + c)^3*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 336*I*sqrt(2)*a^4*cos(d*x
+ c)^3*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 336*I*sqrt(2)*a^4*c
os(d*x + c)^3*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - (672*a^4*cos
(d*x + c)^3 + 235*a^4*cos(d*x + c)^2 + 84*a^4*cos(d*x + c) + 15*a^4)*sin(d*x + c)/sqrt(cos(d*x + c)))/(d*cos(d
*x + c)^3)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**4*sec(d*x+c)**(9/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^4*sec(d*x+c)^(9/2),x, algorithm="giac")

[Out]

integrate((a*cos(d*x + c) + a)^4*sec(d*x + c)^(9/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int {\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{9/2}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^4 \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1/cos(c + d*x))^(9/2)*(a + a*cos(c + d*x))^4,x)

[Out]

int((1/cos(c + d*x))^(9/2)*(a + a*cos(c + d*x))^4, x)

________________________________________________________________________________________